Irrigation Scheduling: Sensors, Technical Tools, and Apps

Wesley M. Porter Ext. Precision Ag and Irrigation Specialist University of Georgia

> All About Irrigation Workshop VA Tech Tidewater AREC March 6, 2018

Irrigation Scheduling

- A technique that involves:
 - Determining how much water is needed
 - When to apply it to the field to meet crop demands.
- The main purpose to schedul irrigation is:
 - To increase the profitability and/or quality of the crop
 - By increasing the efficiency of using water and energy or
 - By increasing crop productivity.

Irrigation Scheduling

• According to the USDA NASS Irrigation is scheduled based on:

Visible Stress 78 90 85 88 90 91 Feel of Soil 40 42 37 40 40 46 Soil Moisture Sensor 10 7 10 9 6 11 Scheduling Service 8 3 6 7 4 5	91 46	89 48
Soil Moisture Sensor107109611Scheduling836745	46	48
Sensor 10 7 10 9 6 11 Scheduling 8 3 6 7 4 5		
8 3 6 / 4 5	9	4
	1	0.2
Weather Report 8 4 4 7 3 5	2	6
Calendar 21 16 14 12 17 15 Schedule 21 16 14 12 17 15	22	15
When Neighbor Irrigates60.62226	1	1

Precision Ag

Soil Water Holding Capacity Example

- We have a soil with the infiltration rate and soil water holding capacity (SWHC) below, and a rooting depth of 12 inches, how much moisture will we store from a rain event that had a 1.5 in/hr intensity and a two hours duration, i.e. we caught 3 inches of rainfall in our rain gage?
 - Infiltration rate is 1.0 in/hr

extension.uga.edu

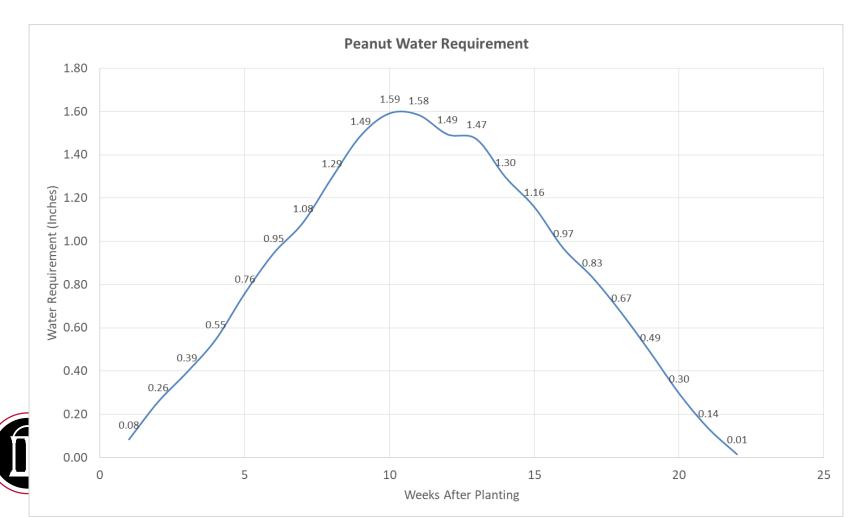
- SWHC is 0.8-1.0 in/ft

Soil Water Holding Capacity Example

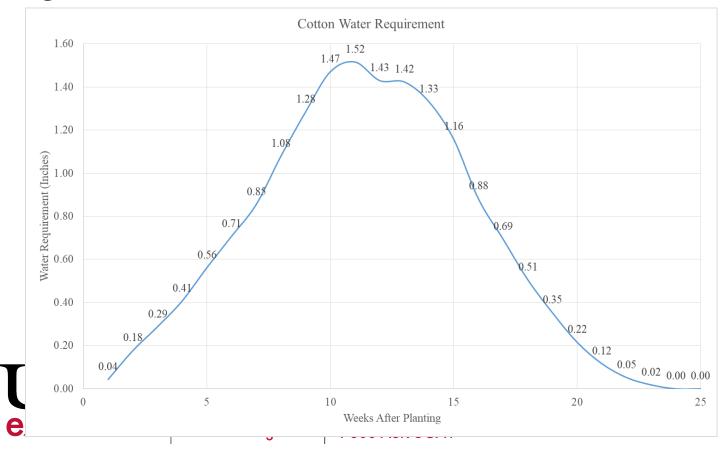
- We have a soil with the infiltration rate and soil water holding capacity (SWHC) below, and a rooting depth of 12 inches, how much moisture will we store from a rain event that had a 1.5 in/hr intensity and a two hours duration, i.e. we caught 3 inches of rainfall in our rain gage?
 - Infiltration rate is 1.0 in/hr
 - SWHC is 0.8-1.0 in/ft
 - We had the ability to infiltrate or "catch" approximately 2.0 inches of the event.
 - With a 12 inch or 1 foot rooting depth, only 1 inch of that was available to our crop.
 - This is the problem with blindly using the checkbook method and models that do not account for soil information!

Irrigation Cost (GA)

- Average Irrigation cost ~ \$9.00/ac-in applied:
 ~\$7/ac-in for electric
 - $-\sim$ \$11/ac-in for diesel (2014 around \$18/ac-in)
- So for 500 acres of irrigated land @ 10 inches of irrigation:
 - -\$45,000


Irrigation Design Considerations

- To meet peak crop demand (~2.0 inches per week) an irrigation system should be designed with a pumping capacity of approximately 6-7 gpm/acre.
- Don't over demand a well with additional acreages or systems.

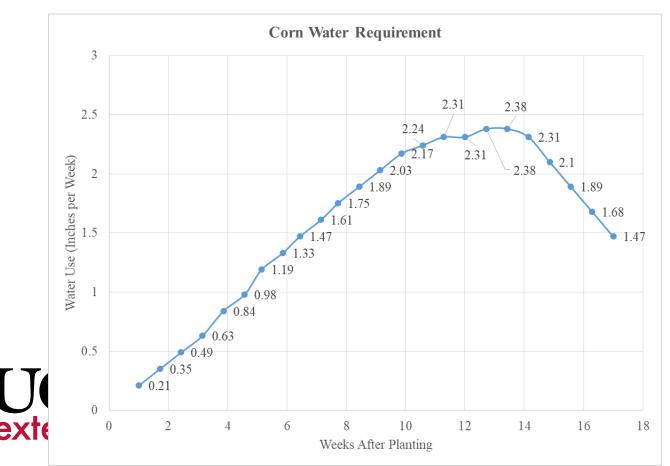

Water Requirements: Peanuts

• Peanut requires approximately 23" of water from planting until harvest (the curve below is @18").

Water Requirements: Cotton

• Cotton's peak water demand begins once it begins to flower, it is critical that cotton be fully irrigated during bloom.

Water Requirements: Cotton


Cotton Irrigation Schedule					
Growth Stage	DAP	Weeks after Planting	Inches/Week	Inches/Day	
Emergence	1 - 7	1	0.04	0.01	
Emergence	8 - 14	2	0.18	0.03	
to First	15 - 21	3	0.29	0.04	
Square	22 - 28	4	0.41	0.06	
_	29 - 35	5	0.56	0.08	
First Square	36 - 42	6	0.71	0.10	
to First	43 - 49	7	0.85	0.12	
Flower	50 - 56	8	1.08	0.15	
	57 - 63	9	1.28	0.18	
	64 - 70	10	1.47	0.21	
	71 - 77	11	1.52	0.22	
First Flower	78 - 84	12	1.43	0.20	
to First	85 - 91	13	1.42	0.20	
Open Boll	92 - 98	14	1.33	0.19	
_	99 - 105	15	1.16	0.17	
	106 - 112	16	0.88	0.13	
	113 - 119	17	0.69	0.10	
	120 - 126	18	0.51	0.07	
	127 - 133	19	0.35	0.05	
First open	134 - 140	20	0.22	0.03	
boll to >60%	141 - 147	21	0.12	0.02	
Open Bolls	148 - 154	22	0.05	0.01	
	155 - 161	23	0.02	0.00	
TT (162 - 168	24	0.00	0.00	
Harvest	169 - 175	25	0.00	0.00	
extension.	uga.edu 1-80	0-ASK-UGA	1		

Water Requirements: Corn

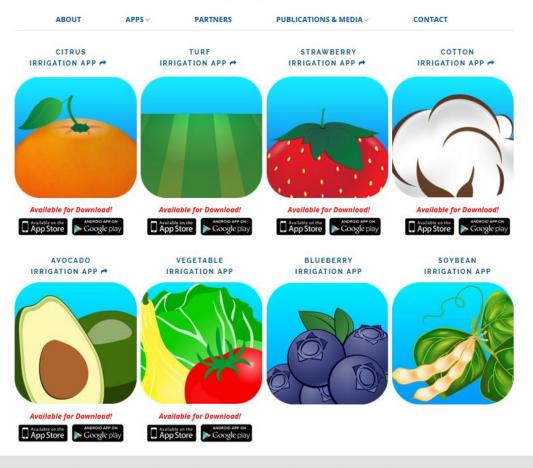
- Corn is known as a higher water using crop.
- Unlike cotton and peanuts typically on corn more water means higher yields.

Crop Growth Stage

Growth Stage	Days After Planting	Inches Per Day
Emergence and primary root developing.	0-7 8-12	.03 .05
Two leaves expanded and nodal roots forming.	13-17 18-22	.07 .09
Four to six leaves expanding. Growing point near surface. Other leaves and roots developing.	23-27 28-32 33-36	.12 .14 .17
Six to eight leaves. Tassel developing. Growing point above ground.	37-41 42-45	.19 .21
Ten to twelve leaves expanded. Bottom 2-3 leaves lost. Stalks growing rapidly. Ear shoots developing. Potential kernel row number determined.	46-50 51-54	.23 .25
Twelve to sixteen leaves. Kernels per row and size of ear determined. Tassel not visible but about full size. Top two ear shoots developing rapidly.	55-59 60-64	.27 .29
Tassel emerging, ear shoots elongating.	65-69	.31
Pollination and silks emerging.	70-74 75-79	.32 .33
Blister stage.	80-84	.33
Milk stage, rapid starch accumulation.	85-89	.34
Early dough stage, kernels rapidly increasing in weight.	90-94	.34
Dough stage.	95-99	.33
Early dent.	100-104	.30
Dent.	105-109	.27
Beginning black layer.	110-114	.24
Black layer (physiological maturity).	115-119	.21

Water Requirements: Soybeans

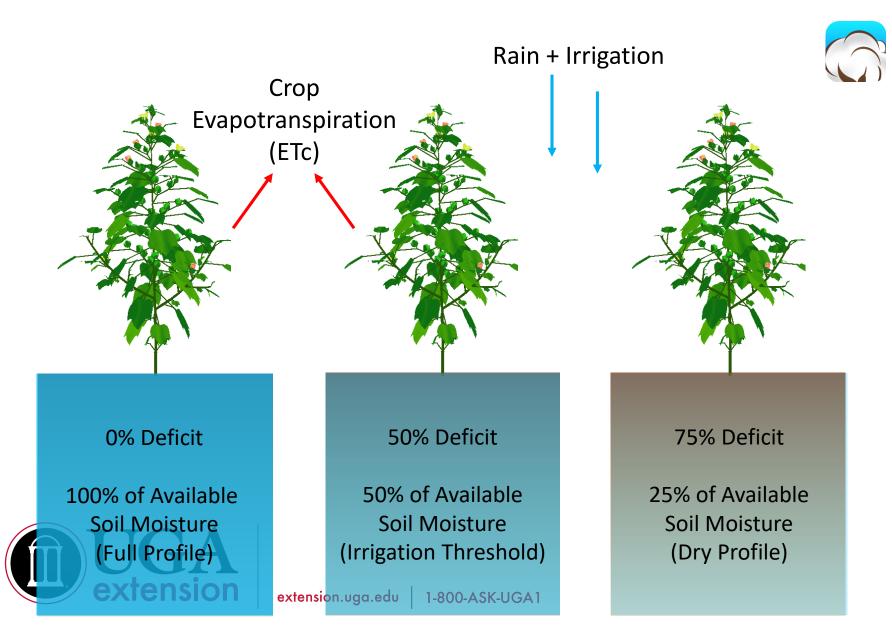
• Soybeans peak water demand begins once it begins to flower up to full seed.


Council Steam	Water Requirement		
Growth Stage	Per day	Per week	
	inches		
Germination/Seedling	0.05 to 0.10	0.35 to 0.70	
Vegetative Growth	0.10 to 0.20	0.70 to 1.40	
Flower to Full Seed	0.25 to 0.35	1.75 to 2.45	
Maturity to Harvest	0.05 to 0.20	0.30 to 1.40	

Growth Stage	Trigger	Amount
Stand Establishment	Inigate prior to planting	1 - 1.5"
Prior to 1 st Bloom (VE – R1)	Wilting by late afternoon	1 – 1.5"
1 st Bloom – Beginning Pod Elongation (R1 – R4)	Wilting by mid-day	1.0 – 1.5"
Beginning Seed – Full Seed (R5 – R6)	Keep from wilting	1.0 – 1.5"
Full Seed – Maturity (R6 – R7)	Wilting by late afternoon	1.0"

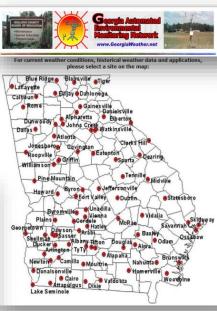
University of Florida IFAS USDA NIFA University of Georgia

SMARTPHONE TECHNOLOGY FOR MANAGING URBAN AND AGRICULTURAL IRRIGATION



Smartlrrigation apps were developed to provide real-time

SmartIrrigation Cotton App Video Tutorial DECEMBER 1, 2015



- Meteorological Data
- Crop coefficient approach for estimated ET
 - $ETc = ETo \times Kc$
- where
- ETc = estimated crop ET
- Kc = crop coefficient

ETo = Penman-Monteith reference ET (FAO-56)

Cotton Irrigation Scheduling App For 2018:

- Release new version of the Cotton App that will use national gridded data sets for meteorological data
 - NOAA NWS RTMA for precipitation and temperature (2.5 km grid)
 - NOAA NWS FRET for ET (4 km grid)
- Regional crop coefficient curves
 - A curve will be assigned based on the region in which the user is located
 - Region based on geographic coordinates of the field

••••• TIM ? • 14:(Sunday, M	
	2m ago
A rain event of 0.72 in was NWS area yesterday. Adjust Press for more	
SI COTTON	2m ago
A rain event of 0.08 in was Lubbock1 area yesterday. A	
SI COTTON	2m ago
Lubbock1 is approaching th phase.	ne First Square
SI COTTON	3m ago
The water deficit in Immoka Irrigation is recommended.	alee1 NWS is 89%.
	3m ago
\frown	
(1

Cotton Irrigation 2013-2014

Method	Conservation Tillage		Conventio	onal Tillage
	Lint Yield (lb/ac)	Water Use (in)	Lint Yield (lb/ac)	Water Use (in)
Checkbook	1350	12.7	1150	12.2
Cotton App	1485	3.0	1259	3.0
CWSI	1430	5.0	1305	2.3
Irrigator Pro	1455	2.8	1200	4.3
Rainfed	1450	1.5	-	-
		2014		
Checkbook			1596	16.8
Cotton App			1573	10.1
Limited Water	1050	3.81		
Dryland	490	0.0		

2013 Rainfall = 27.4 in

2014 Rainfall = 11.1 in

Cotton Irrigation 2015-2016

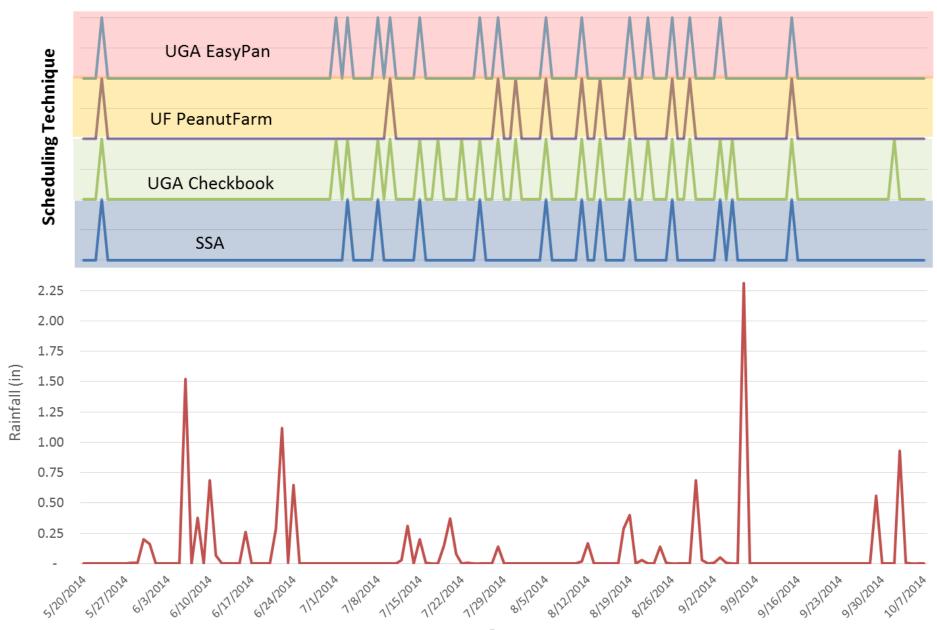
Method	Conserva	tion Tillage	Conventio	nal Tillage
	Lint Yield (lb/ac)	Water Use (in)	Lint Yield (lb/ac)	Water Use (in)
Checkbook	1560	6.5	1621	6.5
Cotton App	1643	5.0	1710	5.8
WaterMark (45 kPa)	1749	3.0	1661	7.8
Rainfed	1760	0.5	-	-
2016				
Checkbook	909	8	724	8
Cotton App	1066	5.25	980	5.25
WaterMark (45 kPa)	1103	3.25	1233	2.25
Rainfed	1224	0.75	-	-

2015 Rainfall = 22.6 inches

2016 Rainfall = 25.8 inches

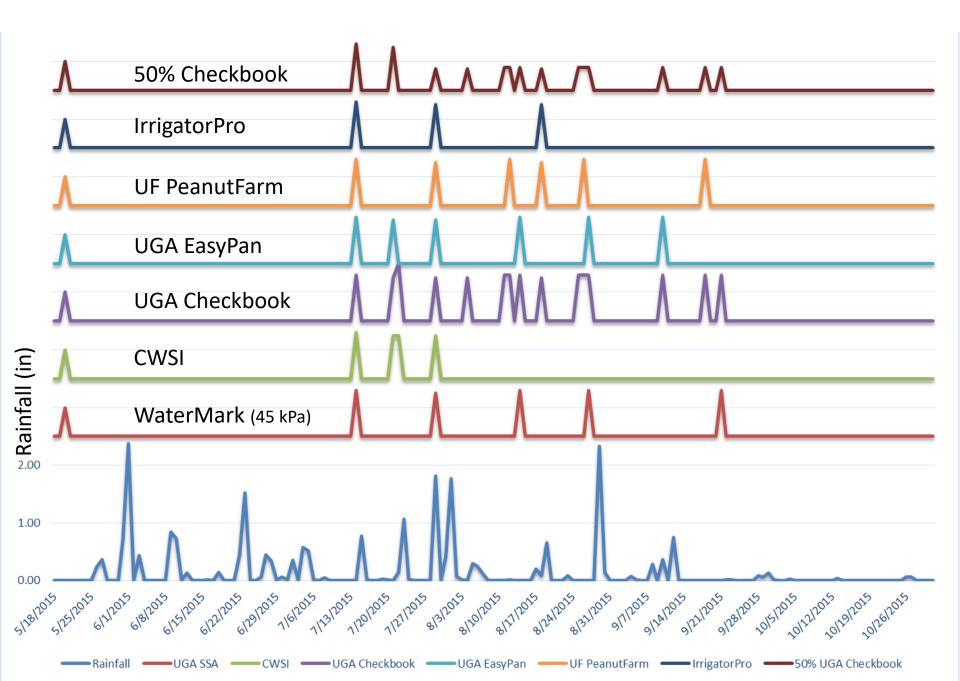
Cotton Irrigation 2017

Method	Conservation Tillage		Conventional Tillage	
	Lint Yield (lb/ac)	Water Use (in)	Lint Yield (lb/ac)	Water Use (in)
Checkbook	1219	9.5	1162	9.5
Cotton App	1363	4.5	1387	4.5
WaterMark (45 kPa)	1334	1.75	1277	4.0
Rainfed	1300	0.5	-	-


Rainfall = 24.3 inches

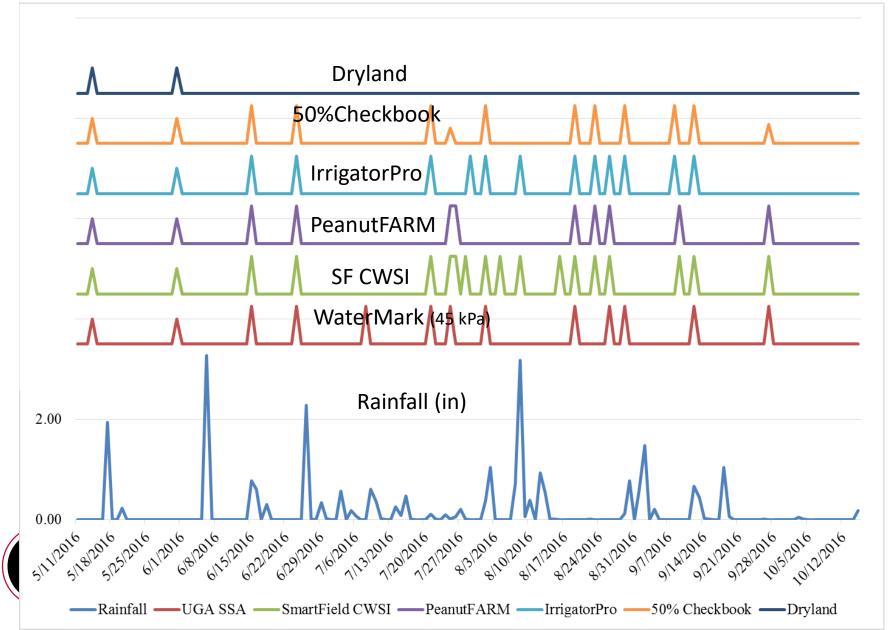
Irrigation Scheduling Method	Irrigation Amount (in)	Total Water (in)	Yield (lb/ac)
Dryland	0.40	12.73	465.2
WaterMark (45 kPa)	9.40	21.73	6052.3
SmartCrop	6.40	18.73	5642.0
EasyPan	11.65	23.98	5725.0
UGA ET Checkbook	15.02	27.35	5025.5
UF Peanut Farm	7.90	20.23	4802.5

Planted: May 20, 2014 Dug: October 10, 2014 Harvested: October 17, 2014 Rainfall: 12.33 inches



Irrigation Scheduling Method	Irrigation Amount (in)	Total Water (in)	Yield (lb/ac)
Dryland	0.50	23.30	5193.6
WaterMark (45 kPa)	4.45	27.25	5478.6
CWSI	3.55	26.35	5172.8
UGA ET Checkbook	12.50	35.30	5313.4
UGA EasyPan	5.20	28.00	5404.9
UF PeanutFarm	5.20	28.00	5327.3
IrrigatorPro	2.80	25.60	5542.6
50% Checkbook	6.76	29.56	5176.1

Planted: May 18, 2015 Dug: October 5, 2015 Harvested: October 12, 2015 Rainfall: 22.65 inches



Irrigation Scheduling Method	Irrigation Amount (in)	Total Water (in)	Yield (lb/ac)
Dryland	1.00	26.80	5249.0
WaterMark (45 kPa)	9.25	35.05	6292.0
SmartField CWSI	13.00	38.80	6019.0
PeanutFARM	7.75	33.55	6371.0
IrrigatorPro	10.00	35.80	6540.0
50% Checkbook	8.43	34.23	6367.0

Planted: May 13, 2016 Dug: October 8, 2016 Harvested: October 15, 2016 Rainfall: 25.80 inches

Irrigation Timing and Frequency

Irrigation Scheduling Method	Irrigation Amount (in)	Total Water (in)	Yield (lb/ac)
Dryland	1.00	25.30	5875
WaterMark (45 kPa)	2.85	27.15	6396
Canopy Temp.	3.85	28.55	6229
PeanutFARM	5.50	29.80	5936
IrrigatorPro	4.00	28.30	6260
50% Checkbook	6.75	31.05	6262
Checkbook	10.50	34.80	5749
EasyPan	4.75	29.05	5979

Planted: May 16, 2017 Dug: September 28, 2017 Harvested: October 5, 2017 Rainfall: 24.3 inches

Economic Analysis

- Net dollar benefits of scheduling methods
- 2017 Estimated Costs from UGA Agricultural and Applied Economics Peanut Enterprise Budgets
 - Irrigation: \$8.25/ac-in
 - Weed control: \$44.35 dryland/\$39.48 irrigated
 - Disease control: \$46.92 dryland/\$87.63 irrigated
 - Assume all other input costs are constant
 - Does not include opportunity cost of management
 - Current marketing price: \$0.19/lb or \$380/ton

Net Benefit on 2014 Trial

Irrigation Scheduling Method	Irrigation Amount (in)	Total Water (in)	Georgia- 06G	Georgia- 12Y	TufRunner 511	TufRunner 727
Dryland	0.40	12.73	Base	Base	Base	Base
UGA SSA	9.40	21.73	\$1,064.34	\$903.50	\$1,001.07	\$836.93
SmartCrop	6.40	18.73	\$949.31	\$835.44	\$1,028.67	\$779.60
UGA EasyPan	11.65	23.98	\$968.45	\$859.39	\$902.90	\$752.09
UGA Checkbook	15.02	27.35	\$798.96	\$764.48	\$689.84	\$586.73
UF PeanutFarm	7.90	20.23	\$758.71	\$647.12	\$808.87	\$690.79

Rainfall = 12.33 in

Net Benefit on 2015 Trial

Irrigation Scheduling Method	Irrigation Amount (in)	Total Water (in)	Georgia- 06G	Georgia -12Y	TufRunner 511	TufRunner 727
Dryland	0.50	23.15	Base	Base	Base	Base
UGA SSA	4.45	27.10	-\$48.15	\$83.42	\$76.76	-\$166.49
UGA EasyPan	5.20	27.85	-\$41.12	\$6.33	\$35.77	-\$119.40
UGA Checkbook	12.50	35.15	-\$90.06	-\$163.46	-\$52.67	-\$66.87
PeanutFARM	5.20	27.85	-\$86.09	\$6.33	-\$13.59	-\$36.93
CWSI	3.55	26.20	-\$35.12	-\$52.11	\$8.92	-\$83.88
IrrigatorPro	2.80	25.45	-\$83.99	\$57.44	\$200.74	-\$76.12
50% UGA Checkbook	6.76	29.41	-\$22.22	-\$192.18	-\$15.76	-\$54.50

Rainfall = 22.65 in

extension.uga.edu 1-800-ASK-UGA1

Net Benefit on 2016 Trial

Irrigation Scheduling Method	Irrigation Amount (in)	Total Water (in)	Georgia- 06G	Georgia- 12Y	TufRunner 511	TufRunner 727
Dryland	1.00	26.80	Base	Base	Base	Base
UGA SSA	9.25	35.05	\$77.62	\$61.16	\$150.33	\$87.68
PeanutFARM	7.75	33.55	\$77.65	\$128.86	\$241.35	\$38.33
CWSI	13.00	38.80	-\$11.84	-\$55.74	\$123.50	-\$10.47
IrrigatorPro	10.00	35.80	\$213.64	\$121.73	\$164.26	\$41.26
50% UGA Checkbook	8.43	34.23	\$156.68	\$5.78	\$204.23	\$94.49

Rainfall = 25.8 in

extension.uga.edu 1-800-ASK-UGA1

Net Benefit on Average 2015-16 Trials

Irrigation Scheduling Method	Irrigation Amount (in)	Total Water (in)	Georgia- 06G	Georgia- 12Y	TufRunner 511	TufRunner 727
Dryland	0.75	24.98	Base	Base	Base	Base
UGA SSA	6.85	31.08	50.58	108.13	149.38	-3.56
UF PeanutFarm	6.48	30.70	31.62	103.44	149.72	36.54
CWSI	8.28	32.50	12.36	-18.08	102.05	-11.33
IrrigatorPro	6.40	30.63	100.67	125.43	218.34	18.41
50% UGA Checkbook	7.59	31.82	103.07	-57.36	130.08	55.84

Questions??

Georgia **Precision Ag**

@GeorgiaPrecisionAg

College & University in Tifton, Georgia Always Open

UGA team members sharing information and updates on latest Precision Agriculture Research and Extension activities within the State of Georgia.

2329 Rainwater Road Tifton, GA 31793

(229) 386-7328

Georgia Precision Ag added 7 new photos. Narch 10 at 10:42am · 🚷

First Corn trial of the season planted at Stripling Irrigation Research Park by UGA team membersl #Plant17 #VRPrecisionPlantStudy #GeorgiaPrecisionAg with Simer Virk Wes Porter Calvin Perry

Georgia Precision Ag shared a link

rch 3 at 8:26am - @

Profitable | PrecisionAg

Like us on Facebook

Precision Agriculture Makes Farming More Sustainable,

Joe Luck (left) and Rachel Stevens check seed placement of a multi-hybrid planter being tested as part of a collaborative research project being conducted

41

Follow us on

Like

GEORGIA

GA Ext PrecisionAg

@WesleyMPorter FOLLOWS YOU

UGA Extension Precision Ag and Irrigation Information, w/ a focus in Precision Ag, Ag Machinery, and Precision Irrigation

V Tifton, GA

GA Ext PrecisionAg @WesleyMPorter · Mar 22 Pivot training for SE District agents at Midville, @StriplingPark

GA Ext PrecisionAg @WesleyMPorter · 20 Sep 2016 Check out @CottonInc cottoncultivated.cottoninc.com new Mid-Week Weather Outlook for the cotton belt. Could be very helpful during #harvest16

Cotton Cultivated Providing the cotton growing community guick and easy access to cotton production resources

23 3 00 2