Resources by Carol Hendrix
Title | Available As | Summary | Date | ID | Author |
---|---|---|---|---|---|
Urban Stormwater: Terms and Definitions | Jul 14, 2020 | 426-119 (BSE-268P) | |||
Best Management Practice Fact Sheet 3: Grass Channels | Jul 1, 2020 | 426-122 (BSE-271P) | |||
Best Management Practice Fact Sheet 4: Soil Restoration | Soil restoration (SR) is the technique of enhancing
compacted soils to improve their porosity and nutrient
retention. It includes biological (worms) and mechanical
aeration, mechanical loosening (tilling), planting
dense vegetation, and applying soil amendments.
Soil amendments involve the spreading and mixing of
mature compost into disturbed and compacted urban
soils (see Figure 1). |
Jul 14, 2020 | 426-123 (BSE-272P) | ||
Best Management Practice Fact Sheet 5: Vegetated Roofs | A vegetated roof (VR) is a best management practice
(BMP) that reduces stormwater runoff and pollution.
Vegetation and media create a permeable system on
a previously impervious surface. The VR intercepts
rainfall and filters runoff while reducing the volume
and velocity. Vegetated roofs consist of a waterproofing
barrier, drainage system, and engineered growing
media. There are two types of VRs: intensive and
extensive. Intensive vegetated roofs are deeper and
heavier, while extensive vegetated roofs are shallower,
lighter, and more common (see Figure 1). The type of
VR determines the amount of maintenance necessary to
maintain the vegetation. |
Jul 14, 2020 | 426-124 (BSE-273P) | ||
Best Management Practice Fact Sheet 6: Rainwater Harvesting | Rainwater harvesting (RWH), also known as rainwater
harvesting systems or cisterns, are devices that intercept,
divert, store, and release collected roof runoff
from rainfall for later use as an alternative water supply
(see figure 1). RWH can also be designed to provide
runoff reduction benefits. Therefore, it is classified as
a best management practice (BMP) for treatment of
urban stormwater. Because of its dual purpose and
benefit, RWH is often classified as a sustainable urban
BMP. |
Jul 1, 2020 | 426-125 (BSE-274P) | ||
Best Management Practice Fact Sheet 7: Permeable Pavement | Permeable pavement (PP) is a modified form of asphalt or concrete with a top layer that is pervious to water due to voids intentionally created during mixing. PPs
include pervious concrete, porous asphalt, and interlocking concrete pavers. These materials are used as stormwater treatment practices in urban areas. They are used in place of traditionally impervious surfaces to allow infiltration and storage, thus reducing runoff
(see figure 1). |
Jul 1, 2020 | 426-126 (BSE-275P) | ||
Best Management Practice Fact Sheet 9: Bioretention | A bioretention cell, or rain garden, is a best management
practice (BMP) designed to treat stormwater runoff
from roofs, driveways, walkways, or lawns. They
are a shallow, landscaped depression that receives and
treats polluted stormwater with the goal of discharging
water of a quality and quantity similar to that of a forested
watershed (figure 1). |
Jan 27, 2020 | 426-128 (BSE-277P) | ||
Best Management Practice Fact Sheet 10: Dry Swale | A dry swale (DS) is a shallow, gently sloping channel
with broad, vegetated, side slopes. Water flow is
slowed by a series of check dams (see figure 1). A DS
provides temporary storage, filtration, and infiltration
of stormwater runoff. Dry swales function similarly to
bioretention, and are comparable to wet swales; however,
unlike a wet swale, a DS should remain dry during
periods of no rainfall. A DS is an engineered best management
practice (BMP) that is designed to reduce pollution
through runoff reduction and pollutant removal
and is part of a site’s stormwater treatment practice
(see figure 2). |
Mar 5, 2020 | 426-129 (BSE-278P) | ||
Best Management Practice Fact Sheet 11: Wet Swale | A wet swale (WS) is an engineered, best management
practice (BMP) arranged in a straight line that is
designed to reduce stormwater pollution. A WS consists
of a shallow, gently sloping channel with broad,
vegetated, side slopes and slow flows (see figure 1).
Wet swales typically stay wet because the bottom of the
swale is below the water table. This is done to encourage
the growth of wetland vegetation, providing water
quality treatment similar to a natural wetland. This
stormwater treatment practice also functions as part of
the stormwater conveyance system. Wet swales have a
relatively low capital cost; however, maintenance can
be is intensive and expensive when compared to other
BMPs. |
Mar 5, 2020 | 426-130 (BSE-279P) | ||
Best Management Practice Fact Sheet 12: Filtering Practices | A stormwater filtering practice (FP) treats stormwater
runoff by passing it through an engineered filter media
consisting of either sand, gravel, organic matter, and/
or a proprietary manufactured product, collecting it in
an underdrain, and then discharging the effluent to a
stormwater conveyance system. FPs are stormwater
treatment practices that are often obtained from the
marketplace due to unique proprietary technologies
(see figure 1). |
Mar 5, 2020 | 426-131 (BSE-280P) | ||
Best Management Practice Fact Sheet 13: Constructed Wetlands | Constructed wetlands are a series of ponds with varying depths that treat stormwater using wetland processes. In terms of biological activity, wetlands are extremely productive; and thus constructed wetlands can provide significant water quality treatment to urban runoff. This fact sheet describes these benefits, and provides guidance on their design and limitations. |
Jan 22, 2020 | 426-132 (BSE-281P) | ||
Best Management Practice Fact Sheet 14: Wet Ponds | Wet ponds are ponds designed to retain water through storage. They provide treatment through settling and biological uptake. They can also attenuate peak flows and provide flood and streambank protection. This fact sheet describes wet ponds and their benefits and limitations. |
Jan 22, 2020 | 426-133 (BSE-282) | ||
Best Management Practice Fact Sheet 15: Extended Detention Ponds | Extended detention ponds (EDs) are dry detention ponds
that provide 12 to 24 hours of runoff storage during peak
runoff events (see figure 1). Releases from the ED ponds
are controlled by an outlet structure. During a storm
event, as the discharge restriction is reached, water backs
up into the ED pond. The pool slows flow velocities and
enables particulate pollutants to settle. Peak flows are
also reduced. ED ponds have the lowest overall pollutant-
removal rate of any stormwater treatment option,
so they are often combined with other upstream, lowimpact
development (LID) practices to better maximize
pollutant-removal rates. Due to their placement at the exit
point of the watershed, ED is often the last opportunity
to treat stormwater before it is discharged to a stream.
Because of its low treatment performance, an ED should
be viewed as the treatment option of last resort. |
Mar 6, 2020 | 426-134 (BSE-283P) |